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ABSTRACT 
 

The forecast uncertainty was one of the 
causes of the recent economic crisis and its 
evaluation became more necessary nowadays. 
The aim of this paper is to build and assess 
different types of forecast intervals for 
quarterly inflation rate in Romania. The 
Bootstrap Bias-corrected-accelerated (BCA) 
forecast intervals outperformed the intervals 
based on historical errors, four out of six values 
of inflation rate being placed in the first type of 
intervals during Q3:2013-Q4:2014. The 
likelihood ratio tests and the chi-square test 
indicated that there are significant differences 
between the ex-ante probability of 0.95 and the 
real probabilities for both types of forecast 
intervals. As a methodological novelty, Monte 
Carlo and bootstrap simulations were used for 
assessing the uncertainty in inflation rate 
forecasts in Romania.  
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1. INTRODUCTION 
 

The forecast uncertainty assessment 
was the subject of several studies in literature. 
Still, this research topic should be developed 
because in real economy the prediction 
uncertainty cannot be omitted. The 
uncertainty affects not only the econometric 
models, but also the forecasts based on this 
method. The variance of forecast errors is a 
common measure of assessing the uncertainty 
associated to point forecasts. On the other 
hand, experts in forecasting consider that 
forecast intervals are by their nature a way of 

putting in evidence the uncertainty of the 
predicting process. Some tests for forecast 
intervals are used to check if there are 
significant differences between the ex-ante 
probability and the computed probability. 

The objective of this research is to 
assess the quarterly inflation rate forecasts in 
the last two quarters of 2013 and in 2014. The 
point and interval forecasts are based on auto-
regressive models associated to transformed 
data sets of inflation rate. Monte Carlo 
simulations are used to assess the uncertainty, 
but in this article we propose the use of 
bootstrap BCA intervals. In this case, the 
statistics are the average of the inflation rates 
taken into consideration for building the 
econometric model. The use of the BCA 
intervals on predictions is a novelty in 
literature and the empirical results 
demonstrated a good performance of this type 
of intervals for inflation rate in Romania. 
 
2. Literature Review 
 

The problem of forecast uncertainty 
becomes very important nowadays, because 
of the great failure of the classical current that 
explains the actual economic crisis. Novy and 
Taylor (2012) came to the conclusion that 
forecast uncertainty is the cause of the USA 
commercial collapse in the period 2008-2009. 
For this period of economic instability 
researchers recommend the come back to 
nonlinear models.  

The policies based on forecasts with 
high degree of uncertainty were an important 
cause of the actual economic crisis. This 
aspect was studied by Bloom and Davis 
(2013), but also by Bachmann, Elstner and 
Sims (2010) who showed that the policy 
uncertainty determined the decrease in 
companies’ profit.  Leduc and Liu (2012) 
observed that the uncertainty reduced the 

 

* This article is dedicated to the 150th anniversary of the Romanian Academy 
** Institute for Economic Forecasting of the Romanian Academy, mihaela_mb1@yahoo.com  
*** Bucharest University of Economic Studies, irina.dragan@csie.ase.ro  
 

 
       /// 

80



///         . Simionescu M., Drăgan I.,            

economic activity more in the actual crisis 
than in the previous crisis.  

Giordani and Söderlind (2003) used 
three classic measures of uncertainty: 
disagreement between forecasters, the 
variance of aggregated histogram and 
standard deviation of individual forecasts. 
Ericsson (2001) considered that the most 
utilized statistical measures of uncertainty 
are: 

1. Forecast bias;  
2. Variance of forecast error;  
3. Mean Square Error- MSE as a 

combination of the two previous 
indicators.  
The forecast interval is built starting 

from the point forecasts and prediction error 
and a probability is attached in accordance to 
the hypothesis regarding the errors 
distribution. In general, we assume that the 
random shocks follow a normal 
distribution , which implies a 
normally distributed probability 
density . 

Initially the researchers used point 
forecasts for past periods to have a proxy as 
an uncertainty measure. These measures are 
compared to ex-ante uncertainty indicators.  

Wallis (2008) showed that Zarnowitz 
and Lambros (1987) defined the consensus as 
the degree of agreement regarding the point 
forecasts of forecasters for a certain variable. 
The authors defined the uncertainty as the 
variance of probability distributions.  

For assessing the density or forecast 
intervals more tests are used, some of them 
also presented by Simionescu (2014).   

 
I. Likelihood ratio (LR) tests for forecast 

intervals  
 

We consider time series for the forecast 
intervals and we set the probability of π for 
the value to be inside the interval. We 
registered time series for the results 
registered in reality and we fix as objective 
the evaluation of ex-ante probability 

correction. If 1n  results are inside the forecast 

intervals and 2n outside it, the coverage 
probability is:  

              (2.1.) 

If the distribution is a binomial one, under the 
null hypothesis, the likelihood is: 

         (2.2.) 
while under the alternative hypothesis it is: 

           (2.3.) 
Christoffersen (1998) established the statistic 
of likelihood ratio as 

   (2.4.) 

 
This is a test of unconditional coverage 

that is actually unsuitable for time series. 
Therefore, Christoffersen (1998) proposed 
another test that combines the test of 
unconditional coverage with the 
independence one.   

The independence test is based on the 
matrix of transition frequencies , which is 
the number of observations that are in state i 
at moment t-1 and in state j at moment t. The 
maximum likelihood estimations of transition 
probabilities are computed as a ratio between 
frequencies in a cell and the total number of 
frequencies of a line. For a forecast interval 
two cases are possible: the values are inside 
or outside the interval, being denoted with 1 
and 0. The transition matrix of estimated 
probabilities is:  

  (2.5.) 
 

The likelihood for P is: 

(2.6.) 
The null hypothesis of the 

independence test specifies that the t-1 state 
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is independent of t state, which is equivalent 
with . 

The estimator of maximum likelihood 
of the common probability is . 

 
 The likelihood under the null 

hypothesis assessed at p is:  
 

        (2.7.) 
The LR test statistic is: 

     (2.8.) 

The test proposed by Christoffersen 
(1998) that combines the unconditional 
coverage test with the independence one has 
the statistics:  

 

     (2.9.) 

 
If the first observation is ignored, 

then: 
    (2.10.) 
 
 

II. Chi-square ( ) tests for forecast 
intervals  

 
Likelihood ratio tests are equivalent to 

Pearson’s goodness-of-fit tests. Wallis (2008) 
used them for the first time for density and 
forecast intervals. The chi-square test for 
unconditional coverage uses the statistics: 

 
             (2.11.) 

 If we consider the matrix of observed 

frequencies, , then 

 

     (2.12.) 
The conditional coverage test 

combined with the independence test uses the 
contingency table of the observed frequencies 

with expected frequencies under the null 
hypothesis of independent lines and using the 
coverage probability. 

 
The matrix of expected frequencies is:  

     (2.13.) 

 
The proportions column is considered 

under the test hypothesis; the test has 2 
degrees of freedom. The statistics are 
computed as a sum of square normal standard 
statistics of the samples proportions, a 
proportion for each row of the table.  For low 
volume samples the additive relationship of 
LR statistics cannot be transposed exactly in 
chi-square test terms.  

 
3.  An Application for the Uncertainty 
Assessment of Inflation Rate Predictions 

 
The application uses a time series for 

inflation rate. For a data series ( ) that is 
modelled according to an autoregressive 
model AR(1), the representation (  
is:  

,      (3.1.) 
In moving average representation 

( ), the h-steps-ahead point forecast is: 

      (3.2.) 
The forecast error variance is: 

         (3.3.) 

The quarterly inflation rates at the end 
of each year are computed, the series’ horizon 
being Q1:2000-2014:Q4. Quarterly forecasts 
were made for the last two quarters of 2013 
and for all the quarters in 2014. The influence 
of the seasonal factor is eliminated using the 
Tramo/Seats method and the new variable is 
denoted by irsa. The data series is not 
stationary and the following transformation 
was made in order to get a stationary data set: 

  (3.4.) 
The Augmented Dickey-Fuller test 

(ADF test) was applied to the transformed 
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data series for different significance levels 
(1%, 5%  and 10%). 

 
Table 3.1. Augmented Dickey-Fuller test for 
quarterly seasonally adjusted inflation rate 
(Q1:2000-Q4:2012) 
Doubled 
difference
d inflation 
rate (The 
speed of 
change in 
inflation 
rate) 

Model 
with 
trend 
and 
constan
t 

Model 
including 
constant  

Model 
without 
trend 
and 
constan
t 

ADF 
statistic 

 
-

5.96899
3 
(Prob.= 
0.0000) 

 
-

6.081928 
(Prob.=0.000
0) 

-
6.00895
3 

 
(Prob.= 
0.0000) 

Critical 
values                                
1% 

-
4.16575
6 

-
3.577723 

-
2.61509
3 

5% -
3.50850
8 

-
2.925169 

-
1.94797
5 

10% -
3.18423
0 

-
2.600658 

-
1.61240
8 

Source: Authors’ calculations 
 

The transformed data series of 
inflation rate is represented using an auto-
regressive model of order 1 (AR(1)):  

. The value 
of Durbin-Watson statistics is 2.199, a value 
close to 2, the fact that indicates the error 
independence. Moreover, the Breusch-
Godfrey test for serial correlation leads us to 
the same conclusion. The probability 
associated to this test is greater than 0.05. So, 
we do not have enough evidence to reject the 
null hypothesis (the hypothesis of the error 
independence). According to the White test, 
the error homoscedasticity is checked for a 
level of significance of 5%. The normality 

assumption is not checked, but it could be 
neglected. The results of the application of 
these testsare presented in Appendix 1. 
 

The process is written as an MA(1) 
(moving average of order 1): 

    (3.5.)  
The variance of forecast error is: 

   (3.6.) 

The error related to parameter 
estimation is a part of the forecast error. 

The forecast error is written as a sum 
of two components, in which the first term is 
the cumulated random error:   

  (3.7.)    

 (3.8.) 
 

Knowing the variance of parameter 
estimated using the ordinary least squares 

( ) and neglecting the correlation between 

 and the estimations, using a first order 
approximation of the linear function, we have: 

  (3.9.) 

Where by , then the 

forecast error variance is:  

 

(3.10.) 
For the quarterly inflation rate 

registered in the first two quarters of 2013, 
the forecast error variance is:  

0.048

                  (3.11.) 
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Table 3. 2. Components of the forecast error 
variance  

 
 
 
 

h 

The 
forecast 
error 
variance 

The first 
component 
of the 
forecast 
error 
variance 

The second 
component 
of the 
forecast 
error 
variance 

1 1.50000 1.00000 0.50000 
2 1.24368 1.08123 0.16245 
3 1.11751 1.08782 0.02969 
4 1.09265 1.08836 0.00429 
5 1.08895 1.08840 0.00054 
6 1.08847 1.08841 0.00006 

Source: own computations 
 

We computed the total forecast error 
variance and we made its decomposition, 
highlighting the following conclusions:   

• The first component of the forecast 
error variance increases in time from 
a quarter to another, while the second 
component decreases very fast ; 

• In the last predicted quarter the 
second component of the forecast 
error variance decreased by  99.98% 
compared to the first quarter. The 
model is updated to make the forecast 
for the next quarters, but it remains 
the same. The Monte Carlo simulations 
are made in order to assess the 
prediction uncertainty.  
 
The application of Monte Carlo 

method in this case supposes several steps: 
1. The econometric model estimation (an 

AR (p) model in this case): 
. 

2. The average and the standard 
deviation of the parameters are 
determined 
 
 
 
 

    Table 3. 3. Average and standard deviation 
of the parameters 

Coefficient  Mean Standard 
deviation  

Constant -0.03188 0.044604 
Slope  0.285030 0.119174 

   Source: own computations 
 

3. A normal distribution is generated for 
each parameter knowing the average 
and the standard deviation (we chose 
a number of 1000 replications) 
We use the following code in R: 
 
> simulation0<-rnorm(1000,-    
 0.031488 ,0.044604) 
> simulation1<-rnorm(1000,  
 0.285030, 0.119174) 

4. The simulated values of the dependent 
variable are computed knowing the 
values of the parameters distribution 
and the observed values. The observed 
values are retained in the vector i. 
>dep<-simulation0+simulation1*i 
 

5. The average and the standard 
deviation of the simulated values for 
dependent variable are computed. 
> x<-mean(dep) 
> y<-sqrt(var(dep)) 
>x 
[1] 0.1661683 
>y 
[1] 0.1144252 

6. An indicator of reliability is computed, 
starting from a critical chosen by the 
researcher (q*):    

   (3.13.) 

The q* values are computed using the 
National Bank of Romania (NBR) inflation 
projections in the first two quarters of 2013.  
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3)-log(3.2)= 0.477-0.505= -0.028 
 

R=  

7. The probability that the transformed 
inflation rate is greater than the q* is:  

=0.5455 

Where  is the probability of R in a 
normal standard repartition. Here log is the 
natural logarithm.  

 

>-0.028 => >-0.028 

=> >0.972 . 

 
Actually, we computed the probability 

(0.5455) that the inflation rate in the fourth 
quarter of 2013 be more than 0.972 of the 
inflation that was registered in the previous 
quarter.  

If we analyse the situation in the third 
quarter of 2013 compared to the last second 
quarter of 2013, q** will be: q**=log(3.2)-
log(3.2)=0. R will be -1.452. There is a 
probability of 0.574 that the inflation rate in 
the third quarter of 2013 be greater than the 
value registered in the second quarter of 
2013.  

The bootstrap technique is used to 
estimate the sampling distribution of the 
statistics, the repartition not being known, by 
repeating the re-sampling of the original data 
set. MacKinnon (2002) considers it a good 
alternative to the classical methods used to 
make estimations or forecasts. When an AR 
model is used, the bootstrap method supposes 
the generation of many pseudo-data based on 
re-sampled residual and on the estimated 
parameters of the model.  

Gospodinov (2002) used the grid 
bootstrap method proposed by Hansen 
(1999) to determine forecasts with unbiased 

median in the cases of the processes with a 
high degree of persistence.  

The bootstrap method supposes the 
application of the following steps: 

1. The estimation of the AR(p) model, 
calculating the bias-corrected 
estimators. 

2. The residual is scaled again using the 
procedure proposed by Thombs and 
Scuchany (1990). 

3. The pseudo-data series are generated 
starting from the estimated residuals; 
the “p” starting values are the first two 
ones from the original dataset.  

4. The parameters of the AR(p) models 
are estimated again starting from the 
pseudo-data series. 

5. The bootstrapped forecasts are 
computed using these estimates.  
In this article we propose another 

procedure based on simulations to construct 
forecasts using an AR(p) model: 

1. For the stationary data series (the 
transformed data set) used in constructing the 
AR(p) model, the average is computed (-
0.00611). 

2. Bootstrap Bias-corrected-
accelerated (BCA) intervals are determined 
for the data series, choosing the average of the 
mentioned data set as statistics.  We used a 
number of 1000 replications and the following 
BCA intervals were gotten in Excel by using 
the “Resampling” add-in. 

The previous procedures are applied 
to make forecasts for Q3:2013-Q4:2014.  
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Table 3. 4. Bootstrap BCA intervals for 
transformed inflation and quarterly inflation 
on horizon Q3:2013-Q4:2014 

Quarter  

Bootstrap 
BCA intervals 
for 
transformed 
inflation 

Bootstrap 
BCA intervals 
for inflation 
(%) 

Lower 
limit  

Upper 
limit 

Lower 
limit  

Upper 
limit 

Q3:2013 
-
0.071 

0.073 4.936 5.705 

Q4:2013 
-
0.068 0.072 

4.621 5.323 

Q1:2014 
-
0.053 0.098 

3.237 4.553 

Q2:2014 
-
0.033 0.102 

3.056 4.228 

Q3:2014 0.014 0.275 3.017 4.126 
Q4:2014 0.065 0.549 2.998 3.754 

Source: own calculations 
 

The bias-corrected-accelerated 
interval (BCA) is a complex bootstrap 
technique used to construct confidence 
intervals. The steps of the BCA bootstrap 
method are described by Lunneborg (2000), 
who calculated the acceleration estimate 
starting from jacknifed estimates. Then, a 
bootstrap sampling was generated starting 
from the initial sample and the bias was 
estimated. Finally, the z scores from the 
normal repartition are included to build the 
BCA confidence interval.  

The limits of the BCA intervals are 
retained as point values used in making 
predictions for the interest variable, forecasts 
based on the estimated AR(p) model.   

In order to eliminate the disadvantage 
of non-normal distribution of the error, the 
parameters of AR(1) model are estimated by 
bootstrapping simulations. The add-in 
“Bootstrap coefficients” available in EViews 
7.2. is used to estimate the bootstrapped 
parameters (1000 simulations). These new 
estimators are used in predicting the 
transformed inflation rate data series.  

The new regression model has the 
following form: 

  (3.14.) 
Using this AR(1) model and applying 

the Monte Carlo method as in the previous 
example,  we computed a probability of 
0.4236 that the inflation rate in the last 
quarter of 2014 be greater than the inflation 
rate in the previous quarter with 0.854 
percentage points. On the other hand, we 
assume with a probability of 0.4188 that the 
inflation registered in the third quarter of 
2014 is greater than that of the second 
quarter of 2014.  

We also construct forecast intervals 
based on the historical forecasting error 
method, under the assumption of normally 
distributed errors of average zero and 
standard deviation equalled to the error.  

, k=1,2,…,K      (3.15.) 
- point forecast of our variable Y 

for period  (t+k) (the prediction is made at 
moment t) 

- α/2quintiles of the standard 

normal distribution  
e- error 
For the last two quarters of 2013 and 

for 2014, we have the following computations: 
In this particular case, the forecast 

error is computed starting from the fact that 
each AR process could be written as an MA 
process. For a moving average process in 
describing the evolution of our indicator, the 
prediction at a future time n+h has the 
following form, according to Simionescu 
(2014): 

= 

   (3.16.) 

- the coefficient 

j- the index of time 
e- the error 
The best forecast (f) is in this case: 
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           (3.17.) 
In our case, for one-step-ahead 

predictions,  h equals 1 and the prediction is 
. 

The forecast error is given by:  

   (3.18.) 
The mean of forecast errors is 

considered to be null.  The errors’ variance is: 
   (3.19.) 

In our particular case, the variance is:  
Considering the hypothesis that the 

error distribution is a normal one, the forecast 
interval is determined as: 

     (3.20.)   

In our case, the forecast interval has 
the following form: 

, that becomes 

                   (3.21.) 
The conversion of AR model to MA one 

is made in R using the following code: 
>ARMAtoMA(ar = c(-0.0315,0.285), 

ma = 1, 1) 
[1] 0.9685 
 

Table 3. 5. Forecast intervals based on the 
historical forecasting error method on 
Q3:2013-Q4:2014 
 

Quarter  

Intervals for 
transformed 
inflation  

Intervals for 
inflation (%) 

Actu
al 
valu
es 
(%) 

Lower 
limit  

Upper 
limit 

Lower 
limit  

Upper 
limit 

 

Q3:201
3 

-
0.834 

2.466 1.29
9 

5.40
8 1.9 

Q4:201
3 

0.204 0.604 1.30
4 

 

5.07
4 

 1.6 
Q1:201 0.337 0.892 1.443 4.937 1.0 

4 
Q2:201
4 

0.459 0.883 1.025 4.753 
0.7 

Q3:201
4 

0.525 1.023 1.32
5 

5.02
3 1.5 

Q4:201
4 

0.783 1.227 1.432 5.448 
0.8 

Source: own computations 
 
We propose to compare the forecast 

intervals based on different methods. As we 
can see three out of six intervals included the 
actual value, but those based on the Bootstrap 
BCA method included four values. 

The ex-ante fixed probability  is 0.95. 
Table 3. 6. Forecast intervals for quarterly 
inflation rate (horizon: Q3:2013-Q4:2014) 

Quarter  

Bootstrap 
BCA 
Intervals for 
inflation (%) 

Intervals for 
inflation 
(historical 
forecasting 
error 
method) (%) 

Real 
value
s (%) 

Lower 
limit  

Upper 
limit 

Lower 
limit  

Upper 
limit 

 

Q3:201
3 

1.83
6 

5.705 1.29
9 

5.408 
1.9 

Q4:201
3 

1.52
1 

5.323 1.30
4 

 

5.074 
 

1.6 
Q1:201
4 

1.22
5 

4.985 1.44
3 

4.937 
1.0 

Q2:201
4 

1.10
4 

3.875 1.02
5 

4.753 
0.7 

Q3:201
4 

1.03
7 

3.448 1.32
5 

5.023 
1.5 

Q4:201
4 

0.77
9 

2.785 1.43
2 

5.448 
0.8 

Source: own computations  
 
The coverage probabilities are 0.66 for 

bootstrap BCA intervals and 0.5 for intervals 
based on the historical forecasting error 
method. The statistics of likelihood ratio test 
are 4.634 for the bootstrap BCA intervals and 
9.964 for the intervals based on the historical 
errors method. 

 The critical value for one degree of 
freedom and at a significance level of 0.05 is 

///        Economic Review – Journal of Economics and Business, Vol. XIV, Issue 1, May 2016 

87



. Economic Review – Journal of Economics and Busines, Vol. XIV, Issue 1, May 2016           /// 

3.841, which is lower than the computed 
values. Hence, there are not significant 
differences between the ex-ante probability 
and the real probability at a 5% significance 
level.  

The statistics of chi-square test of 
unconditional coverage have the values 36.63 
for the bootstrap BCA intervals and 20.21 for 
the intervals based on the historical 
forecasting error method. 

 The computed values are higher than 
the critical one, which indicates a low degree 
of goodness between the ex-ante fixed 
probability and the empirical one.  
 
 

4. CONCLUSIONS 
 
The uncertainty assessment became 

very important nowadays because of the 
effects of economic crisis determined by the 
high degree of forecast uncertainty. For 
quarterly inflation rate in Romania we 
proposed more ways of evaluating the 
forecasts uncertainty.  

We explained the evolution of the 
transformed data series of the inflation using 
an AR(1) model. The uncertainty was 
evaluated by making the decomposition of the 
forecasts variance in the first two quarters of 
2013. The total variance and its components 
registered a decrease in the second quarter 
compared to the first one.    

The Monte Carlo simulations were 
used to assess the uncertainty, evaluating the 
probability that the inflation prediction in a 
quarter changes compared to the previous 
quarter. There is a probability of 0.4236 that 
the inflation rate in the last quarter of 2014 be 
greater than the inflation rate in the previous 
quarter with 0.854 percentage points. On the 
other hand, we assume with a probability of 
0.4188 that the inflation registered in the 
third quarter of 2014 is greater than that of 
the second quarter of 2014. 

For forecast intervals, a form of 
highlighting the uncertainty of predictions, we 
used to methods of forecasting: bootstrap BCA 
and the historical errors method based on the 
optimal forecast. According to likelihood ratio 
tests and chi-square tests, there are significant 
differences between the ex-ante probability 
associated to each interval (0.95) and the 
actual probabilities.  

In a future research we might extend 
the study on other macroeconomic variables 
like real GDP rate or interest rate. On the 
other hand, a comparative analysis with 
density forecasts would be very useful.  
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APPENDIX 1 
 
Breusch-Godfrey and White test 

 

 
 

 
 

Breusch-Godfrey Serial Correlation LM 
Test:  

     
     F-

statistics 
2.51

2402 
    Prob. 

F(1,47) 
0

.1197 
Obs*R-

squared 
2.53

7144 
    Prob. 

Chi-Square(1) 
0

.1112 
     
     

Heteroskedasticity Test: White  
     
     F-

statistic 
0.

121115 
    Prob. 

F(2,47) 
0

.8862 
Obs*R-

squared 
0.

256369 
    Prob. Chi-

Square(2) 
0

.8797 
Scaled 

explained SS 
0.

978739 
    Prob. Chi-

Square(2) 
0

.6130 
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